Geometria Analítica

Na matemática clássica, a geometria analítica, também chamada geometria de coordenadas e de geometria cartesiana, é o estudo da geometria por meio de um sistema de coordenadas e dos princípios da álgebra e da análise. Ela contrasta com a abordagem sintética da geometria euclidiana, em que certas noções geométricas são consideradas primitivas, e é utilizado o raciocínio dedutivo a partir de axiomas e teoremas para obter proposições verdadeiras. É um campo matemático no qual são utilizados métodos e símbolos algébricos para representar e resolver problemas geométricos. Sua importância está presente no fato de que estabelece uma correspondência entre equações algébricas e curvas geométricas. Tal correspondência torna possível a reavaliação de problemas na geometria como problemas equivalentes em álgebra, e vice-versa; os métodos de um âmbito podem ser utilizados para solucionar problemas no outro.left|thumb|Representação do plano-xy com a inscrição dos vetores unitários i e j.A geometria analítica é muito utilizada na física e na engenharia, e é o fundamento das áreas mais modernas da geometria, incluindo geometria algébrica, diferencial, discreta e computacional. Em geral, o sistema de coordenadas cartesianas é usado para manipular equações em planos, retas, curvas e círculos, geralmente em duas dimensões, mas, por vezes, também em três ou mais. A geometria analítica ensinada nos livros escolares pode ser explicada de uma forma mais simples: ela diz respeito à definição e representação de formas geométricas de modo numérico e à extração de informação numérica dessa representação. O resultado numérico também pode, no entanto, ser um vector ou uma forma. O fato de que a álgebra dos números reais pode ser empregada para produzir resultados sobre o contínuo linear da geometria baseia-se no axioma de Cantor-Dedekind. Em matemática, a expressão geometria analítica possui dois significados distintos. O significado moderno e avançado se refere à geometria das variedades analíticas.