Em um triângulo ABC foi traçada a altura AH. Sejam M e N pontos sobre os lados AB e AC, respectivamente, tais que HM é perpendicular a AB e HN é perpendicular a AC. Achar MN, sabendo que o perímetro do triângulo órtico do triângulo ABC é igual a 10.
Observação: o triângulo órtico de um triângulo é aquele cujos vértices são as interseções das alturas do triângulo com os respectivos lados. Pode-se demonstrar que o incentro (encontro das bissetrizes) do triângulo órtico é sempre igual ao ortocentro (encontro das alturas) do triângulo original.